2
積分定数 @sekibunnteisuu
togetter.com/li/1334527 これだけど、いろいろゴチャゴチャしてきたので、hope氏に対する批判点を抜粋する。
積分定数 @sekibunnteisuu
twitter.com/miyakehope/sta… 中学生が習うのは算数じゃなくて数学。このあたりからしてhope氏の主張が分からないのだが、それほど拘ることでもないのでまあいいとしよう。
積分定数 @sekibunnteisuu
twitter.com/miyakehope/sta… 問題文をきちんと読むかどうかとかけ算の順序は関係ない。
積分定数 @sekibunnteisuu
掛け算順序論者が国語云々を言うことがあるが意味が分からない。「ウサギ3匹の耳の数を式に表す時2×3じゃなくあえて3×2って書く方がおかしい」というのも意味不明。 twitter.com/miyakehope/sta…
積分定数 @sekibunnteisuu
twitter.com/miyakehope/sta… 「この問題で4×3の式を作るのは誤読以外の何物でもない」? hope氏の言う「誤読」の意味が分からない。 問題文に4人に3個ずつ、と書いてあって4×3とした子は「3人に4個ずつ」と誤読しているのか?
積分定数 @sekibunnteisuu
しかし、この手の主張をする掛け算順序論者は多い。彼らは「理解する」という中身をろくに考えていないで、「正しい式の順序を書ける」ということを「理解している」と定義しているとしか思えない。
積分定数 @sekibunnteisuu
asahi.com/edu/student/te… >新しいウサギにみんなはびっくり。 これは、3×2と書いた子も含めて、2本耳の兎3羽だと理解していたからである。 この教師は一体、子どもの何を見ているのだろうか?
積分定数 @sekibunnteisuu
suugaku.at.webry.info/201102/article… >抑々 4 × 5 には, 4 の五倍という意味があります。 4 人の五倍では答が 20 人になってしまいます。 これでは問題文の内容を理解しているとは言えないのではないでしょうか。
積分定数 @sekibunnteisuu
>抑々 4 × 5 には, 4 の五倍という意味があります。 4の5倍でもあるし、5の4倍でもある。ついでに言うと、20ということなので、25よりも5小さい数、という意味でもある。 a×bが表しているのは単なる数。その数を求めるためのアルゴリズムの一つがaをb個足すというだけのこと。bをa個足す、でもいい
積分定数 @sekibunnteisuu
>4 人の五倍では答が 20 人になってしまいます。 4人の5倍は20人ではあるが、「四人に五枚ずつ色紙を配る」で4×5としたら20人になるというのはかなり無茶な解釈である。
積分定数 @sekibunnteisuu
という前半部分への突っ込みはさておき「これでは問題文の内容を理解しているとは言えないのではないでしょうか。」というのは、明確な誤り。 「四人に五枚ずつ色紙を配る。色紙の総数は?」という問題で20人と答えたならともかく、4×5としたということで何故問題文を理解していないとなるのか?
積分定数 @sekibunnteisuu
仮に、採点者の想定と逆の順序にした子は問題文を理解していない蓋然性が高いとしても、「逆順」が間違いであるという根拠にはならないし、バツにする合理性もないのだが、実際はどちらの順序の式を書いた子も正しく理解しているというデータがある。 8254.teacup.com/kakezannojunjo…
積分定数 @sekibunnteisuu
hope氏の主張はわかりにくいので私が理解しているかどうかは心許ないが、式が正しいとか間違っているとかが、途中計算の話ではないことぐらい分かっている。 twitter.com/miyakehope/sta…
積分定数 @sekibunnteisuu
どうもかけ算の順序論者は、「バツにするのは最初に立てる式であって、その後交換法則を使って逆にするのは構わないんです!」と言うことで反論した気になる人がいるが、こちらは最初に立てる式をバツにするのは不当だと言っているのだから、そんなのは反論になり得ない。
積分定数 @sekibunnteisuu
強固なかけ算の順序論者は、「4人に3個ずつでは3×4が正しくて、4×3は間違っている、こんなことは言わずもがなの当たり前」と思い込んでいるらしく、順序批判論者もその間違った前提を共有していると思い込んでいる節がある。
積分定数 @sekibunnteisuu
だから順序批判論者が「どちらの順序でも正しい」というのを、「最初に書く式もどちらの順序でも正しい」という主張だとは思いもよらないのかもしれない。だから「正誤が付くのは最初の式だけなんですよ。誤解しないでください」と言うのだろう。
積分定数 @sekibunnteisuu
hope氏も何度もこの手のことを言っているが、こちらは最初から、いわゆる「立式」に関して「どちらでもいい」と言っている。 twitter.com/miyakehope/sta…
積分定数 @sekibunnteisuu
「ウサギ3匹の耳の数を式に表す時2×3じゃなくあえて3×2って書く方がおかしいだろってこと。」 だから、その認識が間違っているということを指摘している。
積分定数 @sekibunnteisuu
で、hope氏が「いや間違っていない」というのなら、その論拠を示せばいいし、「積分定数よ、間違っているというのならその根拠を示せ」と私に要求すればいいのに、なぜかhope氏はそういう実質的な議論に入ることをしないんだよね。
積分定数 @sekibunnteisuu
【ABCDEから異なる2文字を選んで並べる方法は何通りか?という問題では、5×4と4×5、どちらが正しいと思いますか?】 twitter.com/sekibunnteisuu… これ 最初にAを並べるとすると、次に並べられるのはBかCかDかE AB,AC,AD,AEの4通り。最初がA以外でも同様に4通り。4通りが5つだから20通り とするのが定番
積分定数 @sekibunnteisuu
4通りが5つなら、かけ算の順序論者は4×5としないとならないのに、5×4としている。この手のかけ算の順序論者は結構多い。 twitter.com/miyakehope/sta…
積分定数 @sekibunnteisuu
hope氏は主張もだが、客観的事実認識も間違っている。 twitter.com/miyakehope/sta… >普通、ウサギ3羽の耳の数の計算って、1羽の耳2本×3羽以外に作らないと思いますよ。それって掛け算の順序にこだわりたくない為だけの屁理屈じゃありませんかね?
積分定数 @sekibunnteisuu
現実に3×2とする子がいて、それは間違いだという無駄で有害なことを教えているのがこの授業。 asahi.com/edu/student/te…
積分定数 @sekibunnteisuu
あと、これは壮大な勘違いだね。 twitter.com/miyakehope/sta… 「4人に3個ずつで、総数を求める方法は4×3でも3×4でもどっちでもいい」という主張が、掛け算順序論者には何故か「答えさえ出ればいい。過程なんかどうでもいい」と聞こえるようだ。
積分定数 @sekibunnteisuu
「算数・数学は答えが出ればそれでいいのではない。求める過程が重要」というのは、実は私自身がかつて生徒にそう言ってきた。 でも、かけ算の順序論者などの #超算数 論者は同様のことを言っているのに気づいた。
残りを読む(9)

コメント

なり@ナイセン団㌠ @ketokati 2019年4月6日
ふと思ったんだけども、「算数」は「数学」よりよっぽど高度な事をやってるのでは?
coilcoils @coilcoils 2019年4月6日
算数で「仕様理解」させようとしているんでしょうね。でも「規約」を押し付けるのは違うかなー。
面倒くさい @mendoukusaizzz 2019年4月9日
最後の過程についてのツイートを読んでいて思ったんだが、積分定数さんって「型破り」と「形なし」の区別がついていないのかな。 正解を導き出す一般的な方法を教え込んだ後にそれの応用を考えることで理解を深める方が効率いいし、それを組織的に行うところが学校なんじゃないの? それに対して積分定数さんのやり方って、一見真っ当なことを言っているように見えて実は指導者は何もしていないんだよね。正解かどうか評価するだけなら自分で答え合わせができる問題集があればいいんだから。
shin of u @shinofu4 2019年4月9日
mendoukusaizzz また「わざわざバツにする悪影響」に言及してませんね。忘れっぽいのか知りませんが「だから、逆順はバツにするべき」を各コメの最後に付けた方が良いですよ
面倒くさい @mendoukusaizzz 2019年4月9日
shinofu4 そこにはもう皆さんの好きにしてください。 前のまとめで「わざわざバツにする悪影響」しか目に入らない人には何を言っても無駄だと悟りましたから。
shin of u @shinofu4 2019年4月10日
mendoukusaizzz はじめの問題点が目に入らない方に、意見を言う資格なんかありません
shin of u @shinofu4 2019年4月10日
「議題を無視して喋ります」なんてのばかりですね、この話
aioi_au @aioi_au 2019年4月10日
数学上のルールが法律だとすると、この掛け算の順序って社内きそくみたいなもんなんだよな。 裁判で弊社は労働基準法を採用していないとかトンチキなこと言ってたのがここでも話題になってたけど、奴隷制(掛け算の順序ルール)採用してるので、労働基準法(交換則)を守ったらペナルティですみたいなことだよな。
f。 @_ffff 2019年4月14日
mendoukusaizzz 「正解を導き出す一般的な方法」に順序なんてありませんし、ヘンテコな指導をするくらいならマトモな問題集をただ与えるだけなほうがはるかにマシですよ。
面倒くさい @mendoukusaizzz 2019年4月14日
掛け算の順序について何か言及してほしいならば「交換法則が成立する式に順序があるかどうか以前に、文章から式を立てて答える問題では順序を考えないと正しく理解しているとみなされない」ことに触れておきましょうかね。
面倒くさい @mendoukusaizzz 2019年4月14日
mendoukusaizzz 例えばこんな問題はどうでしょう?「みんなで9×9のマスに九九表の答えを穴埋めしていくゲームをしている最中だ。今はあなたの番で3の段の7番目にあたるマスを埋めようとしている。正しい数字はいくつか?」 もしこの問題を「7×3=21」と解答した上、この順序にした理由を聞いたら「掛け算の答えはどっちの順序でも同じでしょ。」と返答されたとしましょう。
面倒くさい @mendoukusaizzz 2019年4月14日
mendoukusaizzz この解答者は問題文を正しく理解した上で問題を解いたのでしょうか?むしろ採点者は「なんで問題文の内容を素直に解釈して3×7と式を立てなかったんだろう?実は問題文をちゃんと読んでいないんじゃないのかな?」と思ってしまうんじゃないですか? つまり、文章から式を立てて解く問題で式の順序の基準に交換法則を引き合いに出すのは、「私は問題文をよく理解しないまま問題を解きました。」と言っているのと大差ないしそう思われても仕方ないんですよ。
f。 @_ffff 2019年4月14日
mendoukusaizzz 「3×7=21」と解答し「掛け算の答えはどっちの順序でも同じでしょ。」と返答したものがいたとして、その解答者は問題文を正しく理解した上で問題を解いたんですか?
面倒くさい @mendoukusaizzz 2019年4月14日
_ffff 掛け算順序問題の厄介な点はそこです。これが交換法則が成立しない式を使って答える問題ならば答えだけを採点対象にしてもうまくいくんです。 答えが合っているという事は式と式を導いた考え方が問題作成者の意図通りか、偶然の結果のどちらかになります。偶然の結果はいつもうまくいくはずがないのでおまけの正解扱いにしても学習に支障は出ないでしょう。
面倒くさい @mendoukusaizzz 2019年4月14日
mendoukusaizzz ですが交換法則が成立する式を使って答える問題にも同様な採点基準を適用する場合、交換法則の性質上間違った順序が存在しないのでどちらの順序でも正解にせざるを得ません。すると問題文の理解が式に使う数字だけ読み取れる程度でも正解になってしまいます。その結果「足し算や掛け算の問題は引き算や割り算の問題に比べて問題文をよく読まなくていい」という理解が通用してしまうので今後の学習に支障が出てしまいます。
面倒くさい @mendoukusaizzz 2019年4月14日
mendoukusaizzz つまり足し算や掛け算の簡単な文章題を解答者が立てた式と答えだけで理解度を見極めるをそれ以外の式を立てる問題と同程度に行うのは不可能なんです。となると問題作成者が意図していない順番の式を立てた解答の採点をバツとするか保留にして解答者に順序を決定した理由を聞きだした結果、問題文をちゃんと理解した上で順番を決めたと判断できる人のみをおまけの正解にするという回りくどいやり方で行くしかないんです。
f。 @_ffff 2019年4月14日
mendoukusaizzz 繰り返しコピペの質問になりますが、「3×7=21」と解答し「掛け算の答えはどっちの順序でも同じでしょ。」と返答したものがいたとして、その解答者は問題文を正しく理解した上で問題を解いたんですか?
面倒くさい @mendoukusaizzz 2019年4月14日
_ffff 逆に聞きたいんですが、引き算や割り算の問題では正解者にそこまで確かめますか?掛け算順序問題は早い話が「問題作成者の想定外な正答をどう扱うか?」が問題の核心なんですから、模範解答通りの答えを正解にするのになんの不都合もないでしょう。
f。 @_ffff 2019年4月14日
mendoukusaizzz 簡単な質問だと思うのですがなぜ答えてもらえないのでしょうか? 「3×7=21」と解答した者にたまたま理由を聞いてみたら「掛け算の答えはどっちの順序でも同じでしょ。」と返答した者がいたという話で、その解答者は問題文を正しく理解した上で問題を解いたとあなたは考えるのかどうかを聞いています。
面倒くさい @mendoukusaizzz 2019年4月15日
_ffff 簡単ゆえに質問の意図がわからないんですよ。 模範回答と同じ答えをしたからといってそれが正しい理解から導き出された答えとは限らない。そこに着目したあなたは正しい。 しかし一般的には模範回答と同じ答えをそこまで細かく評価しないし、私はそこに関しては何も問題視していないのでこれといった意見もありません。 強いて答えるとすればこうなります。
f。 @_ffff 2019年4月15日
mendoukusaizzz 意図など気にせず答えたら良いと思いますが、あなたは「その解答者は問題文を正しく理解した上で問題を解いた」と考えるということで良いですか?
積分定数 @sekibunnteisuu 2019年4月15日
面倒くさい氏はスルーしましょう。名は体を表すの実例です。
面倒くさい @mendoukusaizzz 2019年4月15日
_ffff もうその質問には答えているも同然なのでそこから好きに解釈してください。 で、そこをはっきりさせてどうしたいんですか? 理解力を確認するのにこれ以上の精度を要求するとなると、答えと一緒になぜこの問題がこのように解くのが正解になるのかの証明を書かせるべきとなります。流石にそれは現実的ではないでしょう。
f。 @_ffff 2019年4月15日
mendoukusaizzz 答えているも同然なら素直にイエスノーで答えれば良いと思いますが、上記の質問の回答がイエスならこちら→ mendoukusaizzz の「文章から式を立てて解く問題で式の順序の基準に交換法則を引き合いに出すのは、「私は問題文をよく理解しないまま問題を解きました。」と言っているのと大差ないしそう思われても仕方ない」と矛盾しますし、ノーならやはり想定解答者にも確かめる必要がありますねということになります。
f。 @_ffff 2019年4月15日
mendoukusaizzz あなたは確かめない=問題文を正しく理解した上で問題を解いたと考える=イエスとのことですので、「私は問題文をよく理解しないまま問題を解きました。」と言っているのと大差ないしそう思われても仕方ない」生徒を正しく理解したと評価してしまっているということになりますね。
f。 @_ffff 2019年4月15日
sekibunnteisuu すみません私も結構面倒くさいやつなんです。どれくらい面倒くさいかに興味があれば「ガンダムに女性ファンは云々」というまとめを見てもらうと解ると思います。なんだったらブロックしてくださって結構です。
面倒くさい @mendoukusaizzz 2019年4月15日
_ffff そういう事ならばmendoukusaizzz を「交換法則にが成立する式に順序があるかどうか以前に、問題作成者の想定外の解き方で正答を導いた場合は問題文の内容をベースにそう解いた理由を説明できないと正解にならない」に訂正しますよ。
積分定数 @sekibunnteisuu 2019年4月15日
_ffff じゃあ、面倒くさい氏への対応はお任せします。
f。 @_ffff 2019年4月15日
mendoukusaizzz 「順序があるかどうか以前に」という話ならどちらの式でもマルにすれば良い話だと思いますが、散々あれこれテキトーな屁理屈捏ねてましたが結論はいつもの通りで理解しているかどうかなどどうでもよくて出題者の意図通りの解答をしたかどうかで採点しているのでマルをもらったけど実は理解できていない者がいてもそんなことはどうでも良いなんですね。
f。 @_ffff 2019年4月15日
sekibunnteisuu お任せされても困るのでそれはお断りしますが、面倒くさい氏の対応が面倒くさいということならブロックしてしまえば良いと考えます。まとめ毎にアクセスコントロールできるのではないのですか?
積分定数 @sekibunnteisuu 2019年4月15日
_ffff もう少し様子を見て、場合によっては面倒くさい氏をブロックします。
面倒くさい @mendoukusaizzz 2019年4月15日
_ffff 問題作成者に想定外な解き方をされた場合、採点基準を満たした答えかどうか別途確認する場合がある。課題を与えて実力を見る方法は、模範解答通りの答えを出した全員を一定の実力ありと評価するしかない。どちらの理屈もそういう前提で世の中が回っているんですからしょうがないでしょう。 これを問題視してより正しく理解度を見極めようとするのであれば、算数どころか全ての筆記テストを記述問題にするしかなくなりますよ。無論選択問題やマークシート方式など愚の骨頂です。そうなるのがお望みですか?
f。 @_ffff 2019年4月15日
mendoukusaizzz そんなことしてないで正解者にはマルをつければ良いだけです。どうせあなたは理解してるかどうかなんてどうでもいいと考えているということなのだから最初から素直に「理解度は問わず正解者にはマル」ですむ話でしょ。自分達で余分な仕事を増やして現実的ではないと叫んでるわけでおっしゃる通り愚の骨頂ですね。
面倒くさい @mendoukusaizzz 2019年4月16日
_ffff 掛け算の順序を考えさせることが余分な仕事ですか。本当にそうならば掛け算順序問題の弊害としてよく引き合いに出される交換法則を理解していない大人の話ってなんなんですかね? ちゃんと正しい答えが得られる式を立てていることが確認できているなら「この式はわかりにくいから直して欲しい」という要求そのものが無駄ですし、要求しないのならその後の苦労もしなくて済むでしょうに。
f。 @_ffff 2019年4月16日
mendoukusaizzz 「より正しく理解度を見極めようとする」ことを「愚の骨頂」と言ったのはあなたですよ。発言する度にコロコロ主張変えるのやめてください。「交換法則を理解していない大人の話」て法則を適用するとかしないとか言っちゃう人のことを言うのですよ。
面倒くさい @mendoukusaizzz 2019年4月16日
_ffff だって反論が明後日に飛んでるんですから様々な角度から持論を補強して対応しなくちゃいけないでしょ? それが不満ならば話を最初から整理しましょう。
面倒くさい @mendoukusaizzz 2019年4月16日
mendoukusaizzz 私は九九表を利用した文章問題を例に、交換法則を根拠に式の順序を決めるのは問題文を理解していないも同然だと示しました。そしてあなたは問題文を理解していないのに正解扱いにされた解答者が存在する可能性を示すことで、現在の指導の基準が問題の理解度ではなく出題者の意図を組んでいるかどうかでしかないと結論付けました。
面倒くさい @mendoukusaizzz 2019年4月16日
mendoukusaizzz つまりあなたは交換法則を根拠に式の順序の判断をすることの是非には全く触れていないのです。これは理解度を基準に正しく採点できるようになった場合、交換法則を根拠に式の順序の判断をする考え方は減点対象である事に同意を得たという理解でよろしいか?
five-toed sloth @fivetoedsloth1 2019年4月16日
・掛け算を使えば答えが出ることがわかる。 ・何と何を掛け合わせればよいかわかる。 以上ができていれば、「問題文を理解している」と考えてよいでしょう。 その上で計算を間違えていなければ、正解にすべきです。 小学校低学年ならこれだけできていれば十分ではありませんか?
f。 @_ffff 2019年4月17日
mendoukusaizzz 私が示したのは、あなたの理屈に従えば問題文を理解していないと解釈される者をあなた自身は問題文を理解していると評価してしまっているという矛盾した状況であって「存在する可能性」を云々ではありません。
f。 @_ffff 2019年4月17日
mendoukusaizzz 私は「式の順序の判断」なんて話はそもそもしていませんし、なので当然その根拠がなんだという話もしていません。私は式の順序と理解度に因果関係などないという立場ですのでそんなことで判断はしませんし、そんなことに時間をかけるくらいなら多彩な問題を数多く解かせたほうが良いと考えます。もうずっと皆が言ってることですね。
面倒くさい @mendoukusaizzz 2019年4月17日
_ffff 少し前と立場が逆になりましたね。なんでイエスかノーで簡単に答えられる質問に答えなないんでしょうか?私の悪いところを真似るなんて冗談ならばつまらなすぎますよ。
f。 @_ffff 2019年4月17日
mendoukusaizzz あなたのはただの多重尋問だということですよ。 「あなたは自分がバカな事を言っていることに気づいていますか?」この質問はイエスノーで答えられる形ですがあなたはイエスノーで答えられますか?
キケリキー @KIKERIKI17 2019年4月17日
この手の話、小中学校だと玉石混交だけど、高校からは学力試験のふるいがかかり、大学ですら低レベル校では四則演算に困る学生がいて九九や割り算から教えるという時、底辺学校の数学(算数)授業とかどうなってんのかヒアリングしたいよね。もちろん、教師によって意識の高低はあろうけれどもさ。
面倒くさい @mendoukusaizzz 2019年4月17日
_ffff 多重尋問をやったのはあなたも同じでしょう。そして私は一応答えましたよ。あなたはどうするんですか?
f。 @_ffff 2019年4月17日
mendoukusaizzz 私の質問はあなたが示した前提に基づいたものですので多重尋問にはなり得ませんよ。あなたの質問は他者が受け入れていないこと(掛け算には順序がある)を前提にしています。
面倒くさい @mendoukusaizzz 2019年4月17日
_ffff 私の前提は不正解者が一定の実力に達していないかどうかであって正解者は皆一定の実力以上とみなされるかどうかは前提にしていません。あなたの答える前にも同様の意味合いのことは言いましたよ。 そもそもたった一つの問題で正解者の質まで確保できるんであればテストであんなに問題出さないでしょうが。
f。 @_ffff 2019年4月17日
mendoukusaizzz 私がした質問の前提はあなたのこのコメント→ mendoukusaizzz で、それに対してではこの場合はどうなるんですか? というのが私のこのコメント→ _ffff です。どんどん支離滅裂になっていってますが大丈夫ですか?
面倒くさい @mendoukusaizzz 2019年4月17日
_ffff 支離滅裂になっているように見えるのはあなたの勝手な思い込みでしょう。なんで私の質問に答えると掛け算に順序があることを認める事になるんでしょうか? 質問がわかりにくいなら書き直すと「算数の文章問題で式の形を選ぶ決め手として問題文の内容よりも数学法則を優先するのは正しいのか?」ですよ。どこに掛け算の順序が出てきますか?
f。 @_ffff 2019年4月17日
mendoukusaizzz 式の形というのは順序のことではないのですか? こちら→ mendoukusaizzz では順序と言ってますね。テキトーにその場の思いつきで発言するのはやめてくださいね。そして私がずっと言ってるのは「選ぶ」の部分ですね。a*b とした者は a*b と b*a の2つから a*b を選らんだのですか?
面倒くさい @mendoukusaizzz 2019年4月18日
_ffff あなたが掛け算の順序を肯定せずにすむように助け舟出したんだから、駄々こねてないで使ってくださいよ。もう一度聞きます。 「算数の文章問題を解くのに問題文の内容よりも数学法則を優先するのが正しいんですか?」
f。 @_ffff 2019年4月18日
mendoukusaizzz 質問が意味不明になっちゃってますよ。法則が優先されない問題文てどんなものですか? 質問するならちゃんとした質問をお願いします。とりあえず私の質問は多重尋問ではなかったということでOKですね?
面倒くさい @mendoukusaizzz 2019年4月18日
_ffff はて?もし問題文の内容とその問題を解くのに必要な知識の内容が相反したら問題文の内容を優先するのが文章問題の基本的なルールですよね? つまり掛け算で解く問題の文中に式の順序に関係するヒントがあるならばそれを考慮しないといけません。もし順序を考慮せずに答えて減点や不正解にされた場合、その抗議手段として交換法則をはじめとした数学知識の確かさをどんなにアピールしても、間違った前提を立てて間違った方法で解いた事実は覆りません。
f。 @_ffff 2019年4月18日
mendoukusaizzz 発言の度にころころ内容変えるのやめてくださいとずっと言ってますけど「順序に関係するヒント」てなんですか? というか結局順序がどうこう言い出してるのはギャグかなにかなんです? でもって繰り返しの質問ですが、私の質問は多重尋問ではなかったということでOKなんですね?
f。 @_ffff 2019年4月18日
mendoukusaizzz そんなワケノワラカナイルールはありませんよ>「問題文の内容とその問題を解くのに必要な知識の内容が相反したら問題文の内容を優先するのが文章問題の基本的なルール」
面倒くさい @mendoukusaizzz 2019年4月18日
_ffff では多重尋問かどうかはっきりさせるために聞きたいんですが、なんで掛け算に順序があるのを受け入れられないんですか?
five-toed sloth @fivetoedsloth1 2019年4月18日
そういうのは「出題ミス」というのでは?>「問題文の内容とその問題を解くのに必要な知識の内容が相反したら」
f。 @_ffff 2019年4月18日
mendoukusaizzz そこで言う「多重尋問」てあなたのした質問のことですか?(その後のバカな質問から推察するにどうやらそうであるようですが) それならこちら→ mendoukusaizzz であなたは既に自分が多重尋問をしたことは認めていますが。やっぱり認めないとかいう話でしたらいい加減ころころと主張を変えるのはやめてくださいね。と何度目か言わなければなりませんのでホントいい加減にしてください。
面倒くさい @mendoukusaizzz 2019年4月18日
_ffff 分かりました。私はブレている認識はなかったのですが、よくよく考えてみたら論点の核心を避けていればそうなってしまうのも当然でしたね。 なので核心を問いましょう。「なんで足し算や掛け算に順序がないのですか?」
f。 @_ffff 2019年4月18日
mendoukusaizzz 足し算や掛け算の定義を確認してください。
面倒くさい @mendoukusaizzz 2019年4月18日
_ffff 大雑把に定義すると足し算記号で構成された数式が足し算で掛け算記号で構成された数式が掛け算ですね。では数式の定義はというと数学的な文字や記号が一定のルールの下で並べられた文字列です。 つまりどの数式にも順序があることが原則である以上、数式の一種である足し算や掛け算にだって順序は存在する事になります。
f。 @_ffff 2019年4月19日
mendoukusaizzz 足し算や掛け算は演算の一種であって数式ではありません。その解答では0点です。その後の論旨も滅茶苦茶ですね。
面倒くさい @mendoukusaizzz 2019年4月19日
_ffff では正解はなんでしょうか?
f。 @_ffff 2019年4月19日
mendoukusaizzz ご自身で学んでください。私はあなたの教師ではありませんので悪しからず。大人向けの算数教室や個別指導塾などもあります。良い機会なので一から学びなおされるのが良いと考えます。
面倒くさい @mendoukusaizzz 2019年4月19日
_ffff なるほど、よく分かりました。
面倒くさい @mendoukusaizzz 2019年4月19日
ちなみに教え教わる間柄でもない相手に対して自分に向けられた問いの答えを調べさせるのは、自分は何も証明することなく相手の証明にはケチをつけようとする人の常套手段です。 経験上、これをやる人の言い分が正しかった試しはありません。
f。 @_ffff 2019年4月19日
やっと終わりですかね。お疲れさまでした。ちなみに私は面倒くさい氏の論が矛盾することを証明しましたし(これは私の指摘を受けて論を訂正)、氏の質問が多重尋問であることも証明しましたし(これは当人も認めた)、氏によって私の質問にかけられた「多重尋問である」という指摘が間違っていることも証明しましたので、「自分は何も証明することなく相手の証明にはケチをつけようとする人」というのは私のことではないようですね。良かった良かった。これを機に氏には算数のなんたるかを一から学び直して欲しいものです。
面倒くさい @mendoukusaizzz 2019年4月20日
_ffff 一つ勘違いしていますよ。 私の質問に対しての返答が調べる指示である以上、私が調べた結果mendoukusaizzz はあなたの意見です。まあ私はこの結果には同意するので双方の合意の上議論は終了なのは間違いないですね。
f。 @_ffff 2019年4月20日
mendoukusaizzz つまり、それに対する私の評価> _ffff に同意いただけたということですね。ありがとうございました。
面倒くさい @mendoukusaizzz 2019年4月20日
_ffff 同意も何も、あなたが自身に下したの評価に対して口を挟む必要なんてありませんよ。
f。 @_ffff 2019年4月20日
mendoukusaizzz そうですか。私があなた自身に対して下した評価には口を挟む余地はないということでしたか。ありがとうございました。
面倒くさい @mendoukusaizzz 2019年4月20日
_ffff いえいえむしろ好都合なんですよ。あなたがどのように評価を下そうとも私の評価の方が必ず上になりますからね。 0点と評価したならばあなたは自身の主張を否定する事になり私に何も答えなかった事になります。0点と根拠ナシならば0点の方が上です。 逆に高評価であれば元々の各々の主張と整合性が取れている私の方が上です。
面倒くさい @mendoukusaizzz 2019年4月20日
このややこしい状況を脱したいのであれば、私からの質問の答えを自分で考えて答えてください。そもそも説明責任の負担を相手に押し付けるという、議論のルール違反をしでかさなければこうはならなかったのですから。
shin of u @shinofu4 2019年4月20日
mendoukusaizzz 「議題を無視して喋る」のは議論の妨害です。最大級のルール違反者がバカなこと言うもんじゃありませんよ。
shin of u @shinofu4 2019年4月20日
このように順序論者は「逆順の回答者をバツにする」とは絶対に明言せず「正答をバツにするのはダメでは?問題」に口出し続けます。明言しないのに。明言しないのは「不正解の裁定を下した人間」と思われたくないからです。発言の責任を取りたくない紛うことなき卑怯者ですね
shin of u @shinofu4 2019年4月20日
_ffff 大変お疲れ様でした。あとは最後に「黙っていられない方」が私のコメントに反論(と勝利宣言)するでしょう
f。 @_ffff 2019年4月20日
shinofu4 しょうもないやり取りにお付き合いいありがとうございました。いろいろと学びなおして頂きたいところですが無理なんでしょうね。困ったものです。
f。 @_ffff 2019年4月20日
sekibunnteisuu ここへの書き込みはこれで終わります。コメ欄汚し失礼いたしました。
Iwa**** D****** @swallows_iwad 2019年4月20日
かけ算の順序に拘っている教育公務員と、中学受験の難しい問題が解くことのできる小学生、どちらに算数教えて欲しいか。保護者としては、小学生に教えてもらいたい。
ログインして広告を非表示にする
ログインして広告を非表示にする